Density-Driven Cross-Lingual Transfer of Dependency Parsers
نویسندگان
چکیده
We present a novel method for the crosslingual transfer of dependency parsers. Our goal is to induce a dependency parser in a target language of interest without any direct supervision: instead we assume access to parallel translations between the target and one or more source languages, and to supervised parsers in the source language(s). Our key contributions are to show the utility of dense projected structures when training the target language parser, and to introduce a novel learning algorithm that makes use of dense structures. Results on several languages show an absolute improvement of 5.51% in average dependency accuracy over the state-of-the-art method of (Ma and Xia, 2014). Our average dependency accuracy of 82.18% compares favourably to the accuracy of fully supervised methods.
منابع مشابه
Cross-Lingual Syntactic Transfer with Limited Resources
We describe a simple but effective method for cross-lingual syntactic transfer of dependency parsers, in the scenario where a large amount of translation data is not available. The method makes use of three steps: 1) a method for deriving cross-lingual word clusters, that can then be used in a multilingual parser; 2) a method for transferring lexical information from a target language to source...
متن کاملDoes it have to be trees?: data-driven dependency parsing with incomplete and noisy training data
We present a novel approach to training data-driven dependency parsers on incomplete annotations. Our parsers are simple modifications of two well-known dependency parsers, the transition-based Malt parser and the graph-based MST parser. While previous work on parsing with incomplete data has typically couched the task in frameworks of unsupervised or semi-supervised machine learning, we essent...
متن کاملCross-lingual Dependency Parsing Based on Distributed Representations
This paper investigates the problem of cross-lingual dependency parsing, aiming at inducing dependency parsers for low-resource languages while using only training data from a resource-rich language (e.g. English). Existing approaches typically don’t include lexical features, which are not transferable across languages. In this paper, we bridge the lexical feature gap by using distributed featu...
متن کاملMultilingual Dependency Parsing: Using Machine Translated Texts instead of Parallel Corpora
This paper revisits the projection-based approach to dependency grammar induction task. Traditional cross-lingual dependency induction tasks one way or the other, depend on the existence of bitexts or target language tools such as part-of-speech (POS) taggers to obtain reasonable parsing accuracy. In this paper, we transfer dependency parsers using only approximate resources, i.e., machine tran...
متن کاملA Distributed Representation-Based Framework for Cross-Lingual Transfer Parsing
This paper investigates the problem of cross-lingual transfer parsing, aiming at inducing dependency parsers for low-resource languages while using only training data from a resource-rich language (e.g., English). Existing model transfer approaches typically don’t include lexical features, which are not transferable across languages. In this paper, we bridge the lexical feature gap by using dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015